第16章
圖在靠近照片中心的兩個恆星之中更亮的那顆是天鵝x-1,被認爲是由互相繞着旋轉的一個黑洞和一個正常恆星組成。
圖
還有其他不用黑洞來解釋天鵝x-1的模型,但所有這些都相當牽強附會。黑洞看來是對這一觀測的僅有的真正自然的解釋。儘管如此,我和加州理工學院的基帕·索恩打賭說,天鵝x-1不包含一個黑洞!這對我而言是一個保險的形式。我對黑洞作了許多研究,如果發現黑洞不存在,則這一切都成爲徒勞。但在這種情形下,我將得到贏得打賭的安慰,他要給我4年的《私家偵探》雜誌。事實上,從我們打賭的1975年迄今,雖然天鵝x-1的情形並沒有改變太多,但是人們已經積累了這麼多對黑洞有利的觀測證據,我只好認輸。我進行了約定的賠償,那就是給索恩訂閱一年的《藏春閣》。這使他開放的妻子相當惱火。
現在,在我們的星系中和鄰近兩個名叫麥哲倫星雲的星系中,還有幾個類似天鵝x-1的黑洞的證據。然而,幾乎可以肯定,黑洞的數量比這多得太多了!在宇宙的漫長曆史中,很多恆星應該已經燒盡了它們的核燃料並坍縮了。黑洞的數目甚至比可見恆星的數目要大得相當多。單就我們的星系中,大約總共有1000億顆可見恆星。這樣巨大數量的黑洞的額外引力就能解釋爲何目前我們星系具有如此的轉動速率,單是可見恆星的質量是不足夠的。我們還有某些證據說明,在我們星系的中心有大得多的黑洞,其質量大約是太陽的10萬倍。星系中的恆星若十分靠近這個黑洞時,作用在它的近端和遠端上的引力之差或潮汐力會將其撕開,它們的遺骸以及其他恆星所拋出的氣體將落到黑洞上去。正如同在天鵝x-1情形那樣,氣體將以螺旋形軌道向裏運動並被加熱,雖然不如天鵝x-1那種程度會熱到發出x射線,但是它可以用來說明星系中心觀測到的非常緊緻的射電和紅外線源。
人們認爲,在類星體的中心是類似的、但質量更大的黑洞,其質量大約爲太陽的1億倍。落入此超重的黑洞的物質能提供僅有的足夠強大的能源,用以解釋這些物體釋放出的巨大能量。當物質旋入黑洞,它將使黑洞往同一方向旋轉,使黑洞產生一類似地球上的一個磁場。落入的物質會在黑洞附近產生能量非常高的粒子。該磁場是如此之強,以至於將這些粒子聚焦成沿着黑洞旋轉軸,也即它的北極和南極方向往外噴射的射流。在許多星系和類星體中確實觀察到這類射流。
人們還可以考慮存在質量比太陽小很多的黑洞的可能性。因爲它們的質量比強德拉塞卡極限低,所以不能由引力坍縮產生:這樣小質量的恆星,甚至在耗盡了自己的核燃料之後,還能支持自己對抗引力。只有當物質由非常巨大的壓力壓縮成極端緊密的狀態時,這小質量的黑洞才得以形成。一個巨大的氫彈可提供這樣的條件:物理學家約翰·惠勒曾經算過,如果將世界海洋裏所有的重水製成一個氫彈,則它可以將中心的物質壓縮到產生一個黑洞。(當然,那時沒有一個人可能留下來去對它進行觀察!)更現實的可能性是,在極早期的宇宙的高溫和高壓條件下會產生這樣小質量的黑洞。因爲一個比平均值更緊密的小區域,才能以這樣的方式被壓縮形成一個黑洞。所以當早期宇宙不是完全光滑的和均勻的情形,這纔有可能。但是我們知道,早期宇宙必須存在一些無規性,否則現在宇宙中的物質分佈仍然會是完全均勻的,而不能結塊形成恆星和星系。
很清楚,導致形成恆星和星系的無規性是否導致形成相當數目的“太初”黑洞,這要依賴於早期宇宙的條件的細節。所以如果我們能夠確定現在有多少太初黑洞,我們就能對宇宙的極早期階段瞭解很多。質量大於10億噸(一座大山的質量)的太初黑洞,可由它對其他可見物質或宇宙膨脹的影響被探測到。然而,正如我們需要在下一章看到的,黑洞根本不是真正黑的,它們像一個熱體一樣發光,它們越小則發熱發光得越厲害。所以看起來荒謬,而事實上卻是,小的黑洞也許可以比大的黑洞更容易地被探測到。
第七章黑洞不是這麼黑的
在1970年以前,我關於廣義相對論的研究,主要集中於是否存在一個大爆炸奇點。然而,同年11月我的女兒露西出生後不久的一個晚上,當我上牀時,我開始思考黑洞的問題。我的殘廢使得這個過程相當慢,所以我有許多時間。那時候還不存在關於空間——時間的那一點是在黑洞之內還是在黑洞之外的準確定義。我已經和羅傑·彭羅斯討論過將黑洞定義爲不能逃逸到遠處的事件集合的想法,這也就是現在被廣泛接受的定義。它意味着,黑洞邊界——即事件視界——是由剛好不能從黑洞逃逸而永遠只在邊緣上徘徊的光線在空間——時間裏的路徑所形成的(圖)。這有點像從警察那兒逃開,但是僅僅只能比警察快一步,而不能徹底地逃脫的情景!
圖
我忽然意識到,這些光線的路徑永遠不可能互相靠近。如果它們靠近了,它們最終就必須互相撞上。這正如和另一個從對面逃離警察的人相遇——你們倆都會被抓住:(或者,在這種情形下落到黑洞中去。)但是,如果這些光線被黑洞所吞沒,那它們就不可能在黑洞的邊界上呆過。所以在事件視界上的光線的路徑必須永遠是互相平行運動或互相散開。另一種看到這一點的方法是,事件視界,亦即黑洞邊界,正像一個影子的邊緣——一個即將臨頭的災難的影子。如果你看到在遠距離上的一個源(譬如太陽)投下的影子,就能明白邊緣上的光線不會互相靠近。
如果從事件視界(亦即黑洞邊界)來的光線永遠不可能互相靠近,則事件視界的面積可以保持不變或者隨時間增大,但它永遠不會減小——因爲這意味着至少一些在邊界上的光線必須互相靠近。事實上,只要物質或輻射落到黑洞中去,這面積就會增大(圖);或者如果兩個黑洞碰撞併合併成一個單獨的黑洞,這最後的黑洞的事件視界面積就會大於或等於原先黑洞的事件視界面積的總和(圖)。事件視界面積的非減性質給黑洞的可能行爲加上了重要的限制。我如此地爲我的發現所激動,以至於當夜沒睡多少。第二天,我給羅傑·彭羅斯打電話,他同意我的結果。我想,事實上他已經知道了這個面積的性質。然而,他是用稍微不同的黑洞定義。他沒有意識到,假定黑洞已終止於不隨時間變化的狀態,按照這兩種定義,黑洞的邊界以及其面積都應是一樣的。
圖、圖
人們非常容易從黑洞面積的不減行爲聯想起被叫做熵的物理量的行爲。熵是測量一個系統的無序的程度。常識告訴我們,如果不進行外加干涉,事物總是傾向於增加它的無序度。(例如你只要停止保養房子,看會發生什麼?)人們可以從無序中創造出有序來(例如你可以油漆房子),但是必須消耗精力或能量,因而減少了可得到的有序能量的數量。
熱力學第二定律是這個觀念的一個準確描述。它陳述道:一個孤立系統的熵總是增加的,並且將兩個系統連接在一起時,其合併系統的熵大於所有單獨系統熵的總和。譬如,考慮一盒氣體分子的系統。分子可以認爲是不斷互相碰撞並不斷從盒子壁反彈回來的康樂球。氣體的溫度越高,分子運動得越快,這樣它們撞擊盒壁越頻繁越厲害,而且它們作用到壁上的向外的壓力越大。假定初始時所有分子被一隔板限制在盒子的左半部,如果接着將隔板除去,這些分子將散開並充滿整個盒子。在以後的某一時刻,所有這些分子偶爾會都呆在右半部或回到左半部,但佔絕對優勢的可能性是在左右兩半分子的數目大致相同。這種狀態比原先分子在左半部分的狀態更加無序,所以人們說熵增加了。類似地,我們將一個充滿氧分子的盒子和另一個充滿氮分子的盒子連在一起併除去中間的壁,則氧分子和氮分子就開始混合。
:https://www.zibq.cc。:https://m.zibq.cc